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Note 

Two-Point Quasi-fractional Approximations to the 
Bessel Functions J,(x) of Fractional Order 

I. INTRODUCTION 

Bessel functions of fractional order appear in several areas of physics. Although 
the power series for these functions can be used for any finite value of the variable, 
their computation is not easy since many terms of the power series have to be taken 
for even small values of x. On the other hand, most of the approximations are 
either valid only piecewisely in intervals of the variable x or limited to a given order 
[l-5]. In this paper we give two approximations for the Bessel functions in such 
a way that the complete range 0f.v between - 1 and 1 is covered and they are valid 
for the full range of the variable x b 0. As in previous papers, the parameters of the 
quasi-fractional approximations used here are determined by the simultaneous use 
of power series and asymptotic expansions [68]. Nevertheless, the form of the 
approximation is now defined by a combination of fractional powers and exponen- 
tial functions in such a way that the singularities of the approximation reflect those 
of J,(x) at zero and infinity. Only first-degree polynomials have been used and all 
the parameters of the approximation are obtained as functions of the parameter v. 

For some values of v we get coincidence with the exact function or with other 
previously published approximations [6,9]. 

Better approximants have been published for Jo(x) and J,(x), either by using 
Chebyshev polynomials combined with an algebraic mapping from [ - 1, l] to 
[0, cc] [ 10, 111 or by using our two-point quasi-fractional approximants [12]. 
However, the number of parameters that these approximants must use to improve 
the accuracy is much larger than the number presented here; also, the degrees of the 
polynomials used in [ 121 are greater than one. Moreover, the cases discussed in the 
Chebyshev-series paper [ 111 do not include the functions J,(x) with negative 
fractional v. This is so because only cases which are “natural-natural” or “essen- 
tial-natural” for the boundary conditions (see p. 69 of Ref. [ 111) are considered 
there. On the other hand, the functions J,(x), v fractional and negative, correspond 
to “essential-essential” cases due to the singularity at x=0, as well as to the case 
due to the singularity at x = co already considered there. Furthermore, the main 
practical disadvantage of the method described in Refs. [ 10, 111, compared with 
the method presented here, is that the calculation of the parameters for every v has 
to be started afresh. In our method simple analytical expressions of the parameters 
as functions of v are given. 
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II. PROCEDURE 

The idea of the two-point quasi-fractional method is that both the approximated 
and the exact functions should have the same type of singularities at zero and at 
infinity. The function J,(x) has a branch point of order v at x = 0, and at infinity 
there is an essential singularity. The behaviour of this singularity for positive x is 
trigonometrical with a square root power factor. In order to obtain this behavior 
both at zero and at infinity we have to choose the form of the approximation as 

Y ” 
[ 
p,+p,x 

JJx)=(, +$+1,2 4o+4,x 
cosx+Po+plxsinx 

40+41x 1 (1) 

This has the same kind of branch point at x = 0 as J,(x) and the same form of 
asymptotic expansion at infinity. This is the simplest form of the approximation. 

The parameter q. or the parameter q1 is arbitrary and the other parameters 
(PO, P,, PO, and pi) are determined by using the power series and asymptotic 
expansions of J,(x). 

2’r(v+1)-2’+9-(v+2)+ ...; 
x$1 (2) 

J,(x) = 
x$1; 

1 
a=-lm+~ 

2 4’ (3) 

By expanding the power series and using the asymptotic expansions of Eq. (1) 
and by equating these expansions to those of Eqs. (2) and (3), we obtain the 
parameters of the approximation. The best procedure is to choose q1 = 1 and to 
obtain P, and pi from the leading terms of the asymptotic expansion (3). Then, we 
multiply the power series (2) by the denominator of Eq. (l), and we equate the 
corresponding terms of the numerator after cos x and sin x have been replaced by 
their power series. By using the same denominator, q. + q1 x, all the parameters are 
obtained by solving linear equations. The results are 

P,=4(1 +v) ( 2 sin a $3 -- 
2v+l 2’r(v+l) ; ) 

a=(2v+l)y 

P,=(2v2+v+1)cosa 

p,=4(1+v)sina-(2v2+v+1)cosa- 
(2vZ+5v+1)J$ 

2”r(v + 1) 
(4) 

p,=(2v2+v+1)sina 

q0=2’f2(v+ l)! E-2”r(y+ 1) 
[ 

dm 1 
q, = (2v2 + v + 1) &c/2. 
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For v = - 4, the fraction (sin a)/(2v + 1) tends to 71/4. In this case the values of 
the parameters are 

PO=Pl; P,=7c-22; P, = 1; qo=(n-2)&P; 41=Jn/2 

and the approximation coincides with the exact function 

j_ ,,*(x) = Jp ,,2 (x) = a cos x. 

For v = 0 we obtain the approximation previously published for Jo(x) [6]. 
For v = - 1, we obtain the approximation 

j-,(x) = Jiz . 
2+&x [ 

cosx-(1+x)? ) 1 

(5) 

(6) 

which can also be considered an approximation to -J,(x), with a maximum error 
smaller than the error published in [9]. 

For any v < 0.5 the pole of the approximation occurs at x < 0 and therefore does 
not destroy the precision of the approximation on the positive axis. For v = 0.5 
however we have the pole at x= 0, and for larger values of v the pole is one the 
positive side of the real axis so the approximation fails. For this reason if we want 
an approximation for v up to 1, we have to modify the form of the approximation 
in such a way that all the singularities are kept around x = 0 and x = co. 

With these ideas in mind we have chosen the form of the approximation for v 
around 1 as 

v-l 

m = (1 :x)v-1j2 [ 

P,X 

40+41x 
cosx+!“+PIXsinx 1 40+41x . 

(7) 

The parameters Pi, PO, pi, qo, and 4, are obtained from the series expansions (2) 
and (3) in a manner similar to that used to obtain the parameters of j”(x). The 
results are now 

P,=cosa 

p,=(v-+)-I sina- 
( 

$2 
2”r(v+ 1) -coscI ) 

jIil = sin a 

qo=2”v! (v-t)-’ 
( 

sina- x/Q 
2”r(v + 1) > 

In the case of v = f, P, is zero and for PO and q. it is convenient to find the limit 
of the expression 
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where y is the Euler constant. Since this limit is finite, the approximation and the 
exact functions are coincident for v = 1: 

j,,,(x) = J2/xx sin x = J&x). (9) 

For v = 1, we obtain for J,(x) the approximation 

3-&+x 
f,(x)=~[2(2-~~+~xCOSX+2(2-~~+~xsinX]. (lo) 

This can also be considered an approximation for J-,(x) and has been reported 
previously [9]. 

For v in the interval (0, l), the zeros of the denominator occur at negative values 
of x; therefore this approximation can be used in the interval (0, 1) throughout. For 
values of v smaller than 0.5, the maximum error using j,(x) is smaller than that 
using j,(x) and therefore it is more advantageous to use the first one. 

III. GRAPHIC RESULTS 

In Fig. 1 we show the maximum error of the approximations as a function of v. 
In each case we have chosen the best approximation; therefore for v > 0.5 the 
approximation used is j”(x) and for v < 0.5 we have used j”(x). 

For negative values of v, the function becomes infinite at x = 0. In order to avoid 
this situation and to obtain a better assesment of the error, we have computed 
IxPy[jy(x) - J,(x)]1 instead of [j”(x) - J,(x)/. Only for the case v = - 1 can both 
methods of computing the error be used; this is shown by the isolated point at 
v = - 1, together with the continuous curve. The variation of the error with the 
independent variable x is shown in Figs. 2 and 3. In Fig. 2 only negative values of 
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FIG. 1. Maximum errors as a function of v. For negative Y the error shown corresponds to xmvjV. 
For 0 < Y < 0.5 and Y > 0.5 the errors are those of jV and f,, respectively (note the seprator mark). 
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FIG. 2. Errors of the functions j-,, ~*“j~~,~, and x1’3j-L,3 as functionS of X. 

FIG. 3. Errors of the functions j,,,, .?,,,, and J,,, as functions of x. 
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v have been chosen (- 1, -3, -i) as representative of the general behaviour. The 
errors are very small around zero and for large values of x; the maximum errors 
occur at x between 1 and 5. In the case of positive v (Fig. 3) we have selected the 
values v=O.l, f, and f. For v=O.l and v = f we use j”(x) and for v = 3 we use 
j”(x). The same pattern for negative v appears for positive v. 

The approximations and the exact functions are coincident for v equal to -0.5 
and 0.5. 

IV. CONCLUSIONS 

A simple approximation to the Bessel functions has been found that gives at least 
two-digit precision for the full range of the variable x 2 0 and for Iv1 < 0.6. The 
maximal error is about 0.3 for (VI near one. 

This approximation uses only rational functions of first degree combined with 
fractional powers and trigonometric functions. We deem the precision obtained to 
be sufficient for a great number of applications in which these functions appear. The 
results for integer v coincide with those reviously published and for v = f $ the 
approximations coincide with the exact functions. 
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